35 research outputs found

    Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors : influence of excitation wavelength and temperature

    Get PDF
    SrAl2O4:Eu,Dy is presumably the best known persistent luminescent phosphor. At room temperature, its green emission remains visible for hours after switching off the excitation. It is known that upon lowering the temperature of the phosphor a second photoluminescence emission band arises in the blue part of the visible spectrum, although its origin is still the subject of discussion. In this paper we thoroughly study the origin of both emission bands in SrAl2O4:Eu,Dy and we attribute this to europium ions substituting for the two different Sr sites in the phosphor's monoclinic host lattice. The photoluminescence properties, the thermal quenching behavior, and photoluminescence lifetime of both emission bands are investigated. A lanthanide energy level scheme is constructed for both sites. Using an integrated approach, i.e., combining charging, afterglow, and thermoluminescence measurements in the same run, we study the charging or trap filling processes in SrAl2O4:Eu,Dy upon excitation with site selective excitation wavelengths and at different temperatures. We show that trap filling is a thermally activated process when the green emitting center is excited at 435 nm. Furthermore, we also demonstrate that the distribution of filled traps after charging depends strongly on the excitation wavelength and thus on which Eu2+ center has been excited. This suggests trapping of the electron close to the ionized Eu2+ ion, without full delocalization to the conduction band during the trapping process. Finally, the quantum efficiency of the persistent luminescence is estimated at 65 (+/−10)%

    Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions : saved by the trap distribution

    Get PDF
    Persistent phosphors are a specific type of luminescent materials having the unique ability to emit light long after the excitation has ended. They are commonly used as emergency signage in near ideal, isothermal indoor situations. Recently, their energy storage capacity was relied on for outdoor situations, e.g. for glow-in-the-dark road marks and in combination with solar cells and photo catalytic processes. In this work the influence of temperature, illumination intensity and the duration of the night is critically evaluated on the performance of afterglow phosphors. The persistent luminescence of SrAl2O4:Eu,Dy green emitting phosphors is studied under realistic and idealized conditions. It is found that the light output profile is hardly influenced by the ambient temperature in a wide range. This is due to the presence of a broad trap depth distribution, which is beneficial to cover the longer and colder winter nights. Temperature drops during the night are however detrimental. For traffic applications, the total light output of glow-in-the-dark road marks at the end of the night is not sufficient for the studied compound, although re-charging by the car's headlamps partially alleviates this. For energy storage applications, the trap density should be improved and tunneling recombination processes might be needed to overcome overnight temperature drops. (C) 2015 Optical Society of Americ
    corecore